企业博客
更多>>实现温补晶振的宽温范围内的精确计时
来源:http://www.kangbidz.com 作者:kbdzkj 2018年04月20
温补晶振即温度补偿晶体振荡器(TCXO),是通过附加的温度补偿电路使由周围温度变化产生的振荡频率变化量削减的一种石英晶体振荡器。在小型化与片式化方面,面临不少困难,其中主要的有两点:
一是小型化会使石英晶体振子的频率可变幅度变小,温度补偿更加困难;
二是片式封装后在其接作业中,由于焊接温度远高于温补晶振的最大允许温度,会使晶体振子的频率发生变化,若不采限局部散热降温措施,难以将温补晶振的频率变化量控制在±0.5×10-6以下。但是,温补晶振的技术水平的提高并没进入到极限,创新的内容和潜力仍较大。
温度补偿
为了实现宽温范围内的精确计时,某种形式的温度补偿是必须的。温度补偿需要定期检测温度, 然后根据温度调整晶体的负载,或者是调整时钟源。
温度补偿可以用两种方法之一实现。第一种方法是研究一种温度补偿算法,利用温度传感器,由计时器件完成模拟或数字的时钟补偿。这种方法通常需要较大的开发和校准投入。另一种方法是使用现成的温补晶振(TCXO)作为RTC的时钟源。
校准寄存器
某些RTC,提供了一个数字校准寄存器,可以定时调整时间。这种方法并不改变石英晶振的任何特性,但可以上下调整32.768kHz抛物线,在指定温度使精度达到0.0ppm。这是通过在振荡器分频链上加、减时钟脉冲实现的。需要减去的时钟脉冲(负校准减时钟),或需要插入的时钟(正校准加时钟)由寄存器的数值设置。加时钟脉冲,时间加快;减时钟脉冲,时间减慢。图2给出的典型曲线表明抛物线上移至精度接近0.0ppm的位置,温度监测点为+55°C。
带有校准寄存器的RTC配合温度传感器,能够在指定温度达到-2.034ppm到+4.068ppm的计时精度。在高温和低温端点,调整范围为-126ppm至+63ppm,无法将曲线校准到接近0.0ppm。需要处理器周期性地测量温度,对校准寄存器以及其它RTC寄存器进行调节。
这种方法的主要难点在于需要工厂校准。因为每个石英晶体的特征不同,因此需要对每个RTC提供一个指定温度范围内的校准表,从而花费较大的人力和较长时间。通常采用非易失寄存器保存校准数据,也大大增加了器件成本。另外,校准过程并未补偿晶体的老化,可能存在±3ppm的变化。尽管校准寄存器不能自动地随着温度的变化进行调整,但它仍然提高了计时精度。
温补晶振
另一种有效提高计时精度的方法是使用具有温度补偿的32.768KHZ晶体振荡器(TCXO),如DS32kHz,作为独立的RTC时钟源。这种器件经过工厂校准,在扩展工业级温度范围内(-40°C至+85°C)能够提供±7.5ppm的精度。TCXO的作用是将晶体抛物线变得平坦(图3)。
TCXO的内置温度传感器可以定时检测器件温度,用得到的温度值在查找表内查询,查找到的参数用来计算并产生内部32.768kHz晶体的负载电容,以达到0.0ppm的精度。查找表置于芯片内,不需要额外的输入。
晶体在生产过程中优化于特定的负载电容,数据资料中提供了相应的规格。如果实际负载电容不符合规格要求,将相对于标称频率产生偏差。这也正是TCXO提高精度的途径。如果知道特定晶体在每个温度点的频偏,TCXO可以通过调整负载电容来调整频偏。
使用现成的TCXO不需要研究算法,也不需要工厂校准。缺点是增加了成本,这种多芯方案也增大了PCB面积。
最精确的方案—集成RTC/TCXO/晶体
理想的精确计时器件是集成了RTC、TCXO和石英晶体的单芯片方案。DS3231S、 DS3232和即将公布的DS3234既是这样的器件。这些器件具有无与伦比的精度:0°C到+40°C范围内精度为±2.0ppm,相当于每年±1.0分钟;-40°C到0°C和+40°C到+85°C范围内为±3.5ppm,相当于每年±1.8分钟。最差情况下所能提供的精度如图4所示。如上所述,集成TCXO使晶体原有的抛物线特性曲线变成较为平坦的曲线。
一是小型化会使石英晶体振子的频率可变幅度变小,温度补偿更加困难;
二是片式封装后在其接作业中,由于焊接温度远高于温补晶振的最大允许温度,会使晶体振子的频率发生变化,若不采限局部散热降温措施,难以将温补晶振的频率变化量控制在±0.5×10-6以下。但是,温补晶振的技术水平的提高并没进入到极限,创新的内容和潜力仍较大。
温度补偿
为了实现宽温范围内的精确计时,某种形式的温度补偿是必须的。温度补偿需要定期检测温度, 然后根据温度调整晶体的负载,或者是调整时钟源。
温度补偿可以用两种方法之一实现。第一种方法是研究一种温度补偿算法,利用温度传感器,由计时器件完成模拟或数字的时钟补偿。这种方法通常需要较大的开发和校准投入。另一种方法是使用现成的温补晶振(TCXO)作为RTC的时钟源。
校准寄存器
某些RTC,提供了一个数字校准寄存器,可以定时调整时间。这种方法并不改变石英晶振的任何特性,但可以上下调整32.768kHz抛物线,在指定温度使精度达到0.0ppm。这是通过在振荡器分频链上加、减时钟脉冲实现的。需要减去的时钟脉冲(负校准减时钟),或需要插入的时钟(正校准加时钟)由寄存器的数值设置。加时钟脉冲,时间加快;减时钟脉冲,时间减慢。图2给出的典型曲线表明抛物线上移至精度接近0.0ppm的位置,温度监测点为+55°C。
带有校准寄存器的RTC配合温度传感器,能够在指定温度达到-2.034ppm到+4.068ppm的计时精度。在高温和低温端点,调整范围为-126ppm至+63ppm,无法将曲线校准到接近0.0ppm。需要处理器周期性地测量温度,对校准寄存器以及其它RTC寄存器进行调节。
这种方法的主要难点在于需要工厂校准。因为每个石英晶体的特征不同,因此需要对每个RTC提供一个指定温度范围内的校准表,从而花费较大的人力和较长时间。通常采用非易失寄存器保存校准数据,也大大增加了器件成本。另外,校准过程并未补偿晶体的老化,可能存在±3ppm的变化。尽管校准寄存器不能自动地随着温度的变化进行调整,但它仍然提高了计时精度。
温补晶振
另一种有效提高计时精度的方法是使用具有温度补偿的32.768KHZ晶体振荡器(TCXO),如DS32kHz,作为独立的RTC时钟源。这种器件经过工厂校准,在扩展工业级温度范围内(-40°C至+85°C)能够提供±7.5ppm的精度。TCXO的作用是将晶体抛物线变得平坦(图3)。
TCXO的内置温度传感器可以定时检测器件温度,用得到的温度值在查找表内查询,查找到的参数用来计算并产生内部32.768kHz晶体的负载电容,以达到0.0ppm的精度。查找表置于芯片内,不需要额外的输入。
晶体在生产过程中优化于特定的负载电容,数据资料中提供了相应的规格。如果实际负载电容不符合规格要求,将相对于标称频率产生偏差。这也正是TCXO提高精度的途径。如果知道特定晶体在每个温度点的频偏,TCXO可以通过调整负载电容来调整频偏。
使用现成的TCXO不需要研究算法,也不需要工厂校准。缺点是增加了成本,这种多芯方案也增大了PCB面积。
最精确的方案—集成RTC/TCXO/晶体
理想的精确计时器件是集成了RTC、TCXO和石英晶体的单芯片方案。DS3231S、 DS3232和即将公布的DS3234既是这样的器件。这些器件具有无与伦比的精度:0°C到+40°C范围内精度为±2.0ppm,相当于每年±1.0分钟;-40°C到0°C和+40°C到+85°C范围内为±3.5ppm,相当于每年±1.8分钟。最差情况下所能提供的精度如图4所示。如上所述,集成TCXO使晶体原有的抛物线特性曲线变成较为平坦的曲线。
正在载入评论数据...
相关资讯
- [2024-02-18]Greenray晶体振荡器专为国防和航...
- [2024-01-20]HELE加高产品和技术及热门应用
- [2024-01-20]HELE加高一个至关重要的组件晶体...
- [2023-12-28]Suntsu晶振最新的射频滤波器突破...
- [2023-12-28]Qantek提供各种高可靠性微处理器...
- [2023-10-11]日本纳卡石英晶体的低老化领先同...
- [2023-09-25]遥遥领先H.ELE开启汽车创新
- [2023-09-23]瑞萨电子MCU和MPU产品领先同行